A level Chemistry department

Pre-induction Activity

Welcome to A-level Chemistry at the sixth form Bolton.

OCR Chemistry – Chemistry A H432

Specification

https://www.ocr.org.uk/Images/171720-specification-accredited-a-level-gcechemistry-a-h432.pdf

<u>Tool Kit</u>

Pen, Pencil, ruler, scientific calculator, lever arch folder.

Recommended books and workbooks

The chemistry department will provide printed booklets and question packs for all students which cover the entire course to A* standard, however for additional reference please see below.

Induction Task – perfection of GCSE skills

In order to get you fully prepared for A-Level Chemistry, you must complete this task.

Your work should be handed in at your first Chemistry lesson or can be uploaded in advance of the first day of teaching.

Part 1: Atomic structure

Need help in parts 1 and 2? <u>https://tinyurl.com/y4bdmsgz</u>

What you know from GCSE:

- Electrons orbit the nucleus in energy levels (called shells)
- The first level can hold a maximum of 2 electrons, the second can hold 8 and the third can hold a maximum of 8.

Q1. Draw a diagram to show the electron arrangement of the following elements-

a. Carbon

b. Fluorine

c. Magnesium

d. Sulphur

e. Argon

Part 2: The periodic table

The periodic table gives you two numbers:

- <u>Atomic number</u> = It is also called the proton number as it gives the number of protons in the nucleus.
- <u>Relative atomic mass</u> = A_r . This gives you an average mass of all the isotopes

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1				Key		[18
1		atomic number		ber												2	
H		name														He	
1.0	2		relativ	e atomic	mass							13	14	15	16	17	4.0
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.9	9.0											10.8	carbon 12.0	nitrogen 14.0	0xygen 16.0	fluorine 19.0	20.2
11	12										1	13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
sodium	magnesium			-		_	•	•			40	aluminium	silicon	phosphorus	sulfur	chlorine	argon
23.0	24.3	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
20 1	d0 1	scandium 4E 0	titanium 47.0	vanadium EO O	chromium E2 0	manganese E4 O	iron EE Q	cobalt EQ O	nickel	copper 62 E	Zinc GE 4	gallium 60.7	germanium 72 G	arsenic 74 O	selenium 70.0	TO O	krypton 92.0
39.1	40.1	40.0	47.9	30.9	32.0	34.9	33.0	30.9	30.7	47	40	40	72.0	74.9	79.0	19.9	03.0
Bh	30	39	40	41 Nb	42 Mo	40 To	44 Du	40 Ph	40 Rd	4/	40 Cd	49	50	OI Ch	52	55	04 Vo
nubidium	strontium	vttrium	zirconium	niobium	molybrienum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	Xenon
85.5	87.6	88.9	91.2	92.9	95.9		101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Та	w	Re	Os	Ir	Pt	Au	Ha	τı	Pb	Bi	Po	At	Rn
caesium	barium	lanthanoids	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0			
87	88	00 402	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	09-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		Fl		Lv		
francium	radium	actinoids	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		

The Periodic Table of the Elements

Q2. The periodic table is the way of arranging the chemical elements in order of increasing _____

Q3. What does the group number indicate?

Q4. What does the period number indicate?

Q5. What is meant by isotopes?

Individual isotopes of an element have a mass number:

• The mass number gives the total number of neutrons + protons. This cannot be found on the periodic table.

Q6. Copy and Complete the table for individual isotopes of some elements :

Element	Symbol	Z	A	No. protons	No. neutrons	No. electrons
sodium			23			
		6	12			
		12			12	
		84	210			
chlorine		17	35			
chlorine		17	37			

Part 3: Molecular formulae and Relative formula mass (Mr)

Compounds (and some elements, such as O_2) are formed when more than one atoms bonds together. These compounds or elements have a chemical formula.

Formulae tell you the number of each type of atom that are present in a compound.

Relative formula mass (or relative molecular mass) tells you the relative mass of a compound or element. It is worked out by adding together the A_r , or relative atomic mass, of all atoms of a compound.

• Use *A*_r and NOT mass number.

Q8 Work out the Mr of each of the compounds							
а.	BaCl ₂						
b.	<i>K</i> ₂ <i>O</i>						
С.	Ag ₂ SO ₄						
d.	Mg(NO ₃) ₂						
e.	(NH4)3PO4						

Part 4:Balancing Equations

Q9

You will be asked to balance various equations in A level Chemistry Balance the following symbol equations

Part 5: Chemical formulas

Q10 What is the chemical formula of

- a. Sulphuric acid
- b. Nitric acid
- c. Hydrochloric acid
- d. Phopshoric acid

Part 6: Bonding

lonic structures

Q11-How is an ionic bond formed?

Q12-Draw a dot cross diagram showing the ionic bonding in

- a. Sodium Chloride -NaCl
- b. Calcium Chloride -CaCl₂
- c. Calcium Oxide-CaO

Covalent bonding

Q13-How is a covalent bond formed?

14) Draw a dot cross diagram to represent covalent bonding for:

- a. Methane-CH4
- b. Oxygen-O₂
- c. Carbon dioxide-CO₂

Giant covalent/covalent macromolecules

- Giant covalent structures are huge lattices of atoms attached together by covalent bonds.
- Examples of giant covalent are diamond, silicon and graphite
- These types of structures have very large melting points because you need to break lots of strong covalent bonds.

Simple molecules

- Most covalent structures make simple molecules
- When you melt a simple molecular structure, the covalent bonds stay in place, but forces between the simple molecules, called 'intermolecular forces' break.
- Intermolecular forces are weak, so the melting points are low.

15. Complete the table by adding the type of structure:

	Melting Point °C (high or low)	Boiling Point °C (high or low)	Ionic, giant covalent or simple molecule?
Diamond			
Methane			
Water			
Barium oxide			